
MATLAB®

3-D Visualization

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® 3-D Visualization
© COPYRIGHT 1984–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2006 Online only New for MATLAB® 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB® 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB® 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB® 7.5 (Release 2007b)
March 2008 Online only Revised for MATLAB® 7.6 (Release 2008a)

This publication was previously part of the
Using MATLAB® Graphics User Guide.

October 2008 Online only Revised for MATLAB® 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB® 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB® 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB® 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)
March 2017 Online only Revised for Version 9.2 (Release 2017a)
September 2017 Online only Revised for Version 9.3 (Release 2017b)
March 2018 Online only Revised for Version 9.4 (Release 2018a)
September 2018 Online only Revised for Version 9.5 (Release 2018b)
March 2019 Online only Revised for Version 9.6 (Release 2019a)
September 2019 Online only Revised for Version 9.7 (Release 2019b)

Surface and Mesh Plots
1

Creating 3-D Plots . 1-2

Changing Surface Properties . 1-8

Creating the MATLAB Logo . 1-19

Representing Data as a Surface . 1-28
Functions for Plotting Data Grids . 1-28
Functions for Gridding and Interpolating Data 1-29
Mesh and Surface Plots . 1-29
Visualizing Functions of Two Variables 1-30
Surface Plots of Nonuniformly Sampled Data 1-33
Reshaping Data . 1-35
Parametric Surfaces . 1-38

Polygons
2

Introduction to Patch Objects . 2-2
What Are Patch Objects? . 2-2
Behavior of the patch Function . 2-3
Creating a Single Polygon . 2-4

Multifaceted Patches . 2-7
Example — Defining a Cube . 2-7

v

Contents

Volume Visualization
3

Overview of Volume Visualization . 3-2
Examples of Volume Data . 3-2
Selecting Visualization Techniques . 3-3
Steps to Create a Volume Visualization 3-3
Volume Visualization Functions . 3-4

Techniques for Visualizing Scalar Volume Data 3-6
What Is Scalar Volume Data? . 3-6
Ways to Display MRI Data . 3-6

Exploring Volumes with Slice Planes . 3-14
Slicing Fluid Flow Data . 3-14
Modify the Color Mapping . 3-18

Connecting Equal Values with Isosurfaces 3-22
Isosurfaces in Fluid Flow Data . 3-22

Isocaps Add Context to Visualizations 3-24
What Are Isocaps? . 3-24
Other Isocap Applications . 3-26
Defining Isocaps . 3-26
Adding Isocaps to an Isosurface . 3-27

Visualizing Vector Volume Data . 3-30
Lines, Particles, Ribbons, Streams, Tubes, and Cones 3-30
Using Scalar Techniques with Vector Data 3-30
Specifying Starting Points for Stream Plots 3-31
Accessing Subregions of Volume Data 3-35

Stream Line Plots of Vector Data . 3-37
Wind Mapping Data . 3-37
1. Determine the Range of the Coordinates 3-37
2. Add Slice Planes for Visual Context 3-37
3. Add Contour Lines to the Slice Planes 3-38
4. Define the Starting Points for Stream Lines 3-38
5. Define the View . 3-38

Displaying Curl with Stream Ribbons 3-40
What Stream Ribbons Can Show . 3-40

vi Contents

1. Select a Subset of Data to Plot . 3-40
2. Calculate Curl Angular Velocity and Wind Speed 3-40
3. Create the Stream Ribbons . 3-41
4. Define the View and Add Lighting 3-41

Displaying Divergence with Stream Tubes 3-43
What Stream Tubes Can Show . 3-43
1. Load Data and Calculate Required Values 3-43
2. Draw the Slice Planes . 3-44
3. Add Contour Lines to Slice Planes 3-44
4. Create the Stream Tubes . 3-44
5. Define the View . 3-45

Creating Stream Particle Animations 3-47
Projectile Path Over Time . 3-47
What Particle Animations Can Show 3-48
1. Specify Starting Points of the Data Range 3-49
2. Create Stream Lines to Indicate Particle Paths 3-49
3. Define the View . 3-49
4. Calculate the Stream Particle Vertices 3-49

Vector Field Displayed with Cone Plots 3-52
What Cone Plots Can Show . 3-52
1. Create an Isosurface . 3-52
2. Add Isocaps to the Isosurface . 3-53
3. Create the First Set of Cones . 3-53
4. Create Second Set of Cones . 3-54
5. Define the View . 3-54
6. Add Lighting . 3-54

Visualizing Volume Data . 3-56

Visualizing Four-Dimensional Data . 3-63

Displaying Complex Three-Dimensional Objects 3-70

Displaying Topographic Data . 3-79

vii

Surface and Mesh Plots

• “Creating 3-D Plots” on page 1-2
• “Changing Surface Properties” on page 1-8
• “Creating the MATLAB Logo” on page 1-19
• “Representing Data as a Surface” on page 1-28

1

Creating 3-D Plots
This example shows how to create a variety of 3-D plots in MATLAB®.

Mesh Plot

The mesh function creates a wireframe mesh. By default, the color of the mesh is
proportional to the surface height.

z = peaks(25);

figure
mesh(z)

1 Surface and Mesh Plots

1-2

Surface Plot

The surf function is used to create a 3-D surface plot.

surf(z)
colormap(jet) % change color map

Surface Plot (with Shading)

The surfl function creates a surface plot with colormap-based lighting. For smoother
color transitions, use a colormap with linear intensity variation such as pink.

surfl(z)
colormap(pink) % change color map
shading interp % interpolate colors across lines and faces

 Creating 3-D Plots

1-3

Contour Plot

The contour function is used to create a plot with contour lines of constant value.

contour(z,16)
colormap default % change color map

1 Surface and Mesh Plots

1-4

Quiver Plot

The quiver function plots 2-D vectors as arrows.

x = -2:.2:2;
y = -1:.2:1;

[xx,yy] = meshgrid(x,y);
zz = xx.*exp(-xx.^2-yy.^2);
[px,py] = gradient(zz,.2,.2);

quiver(x,y,px,py)
xlim([-2.5 2.5]) % set limits of x axis

 Creating 3-D Plots

1-5

Slices through 3-D Volumes

The slice function displays data at planes that slice through volumetric data.

x = -2:.2:2;
y = -2:.25:2;
z = -2:.16:2;

[x,y,z] = meshgrid(x,y,z);
v = x.*exp(-x.^2-y.^2-z.^2);

xslice = [-1.2,.8,2]; % location of y-z planes
yslice = 2; % location of x-z plane
zslice = [-2,0]; % location of x-y planes

1 Surface and Mesh Plots

1-6

slice(x,y,z,v,xslice,yslice,zslice)
xlabel('x')
ylabel('y')
zlabel('z')

 Creating 3-D Plots

1-7

Changing Surface Properties
This example shows how to get properties of a surface plot in MATLAB® and change the
property values to customize your plot.

Surface Objects

There are several ways to create a surface object in MATLAB. One way is to use surf.

[X,Y,Z] = peaks(50);

figure
surf(X,Y,Z)

1 Surface and Mesh Plots

1-8

Like all graphics objects, surfaces have properties that you can view and modify. These
properties have default values. The display of the surface object, s, shows the most
commonly used surface properties, such as EdgeColor, LineStyle, FaceColor, and
FaceLighting.

s = surf(X,Y,Z)

s =
 Surface with properties:

 EdgeColor: [0 0 0]
 LineStyle: '-'
 FaceColor: 'flat'
 FaceLighting: 'flat'

 Changing Surface Properties

1-9

 FaceAlpha: 1
 XData: [50x50 double]
 YData: [50x50 double]
 ZData: [50x50 double]
 CData: [50x50 double]

 Show all properties

Get Individual Surface Properties

To access individual properties, use dot notation syntax object.PropertyName. For
example, return the FaceColor property of the surface.

s.FaceColor

ans =
'flat'

Change Commonly Used Surface Properties

Several functions are available to change surface properties. For example, use the
shading function to control the shading of your surface.

shading interp % interpolate the colormap across the surface face

1 Surface and Mesh Plots

1-10

Use the lighting function to adjust the lighting characteristics of your surface. In order
for lighting to have any affect, you must light your surface by creating a light object.

light % create a light
lighting gouraud % preferred method for lighting curved surfaces

 Changing Surface Properties

1-11

To change the reflectance property of your surface, use the material function.

material dull % set material to be dull, no specular highlights

1 Surface and Mesh Plots

1-12

To set the transparency for all objects in the current axes, use the alpha function. This
function sets the transparency to any value between 1 and 0, where 1 means fully opaque
and 0 means completely transparent.

alpha(0.8) % set transparency to 0.8

 Changing Surface Properties

1-13

Change Other Surface Properties

To customize the look of your surface, change property values using dot notation.

CData defines the colors for the vertices of the surface. The FaceColor property
indicates how the colors of the surface faces are determined from the vertex colors.

s.CData = hypot(X,Y); % set color data

1 Surface and Mesh Plots

1-14

s.FaceColor = 'interp'; % interpolate to get face colors

AlphaData defines the transparency for each vertex of the surface. The FaceAlpha
property indicates how the transparency of the surface faces are determined from vertex
transparency.

s.AlphaData = gradient(Z); % set vertex transparencies
s.FaceAlpha = 'interp'; % interpolate to get face transparencies

 Changing Surface Properties

1-15

Get All Surface Properties

Graphics objects in MATLAB have many properties. To see all the properties of a surface,
use the get command.

get(s)

 AlignVertexCenters: 'off'
 AlphaData: [50x50 double]
 AlphaDataMapping: 'scaled'
 AmbientStrength: 0.3000
 Annotation: [1x1 matlab.graphics.eventdata.Annotation]
 BackFaceLighting: 'reverselit'
 BeingDeleted: 'off'

1 Surface and Mesh Plots

1-16

 BusyAction: 'queue'
 ButtonDownFcn: ''
 CData: [50x50 double]
 CDataMapping: 'scaled'
 CDataMode: 'manual'
 CDataSource: ''
 Children: [0x0 GraphicsPlaceholder]
 Clipping: 'on'
 CreateFcn: ''
 DataTipTemplate: [1x1 matlab.graphics.datatip.DataTipTemplate]
 DeleteFcn: ''
 DiffuseStrength: 0.8000
 DisplayName: ''
 EdgeAlpha: 1
 EdgeColor: 'none'
 EdgeLighting: 'none'
 FaceAlpha: 'interp'
 FaceColor: 'interp'
 FaceLighting: 'gouraud'
 FaceNormals: [49x49x3 double]
 FaceNormalsMode: 'auto'
 HandleVisibility: 'on'
 HitTest: 'on'
 Interruptible: 'on'
 LineStyle: '-'
 LineWidth: 0.5000
 Marker: 'none'
 MarkerEdgeColor: 'auto'
 MarkerFaceColor: 'none'
 MarkerSize: 6
 MeshStyle: 'both'
 Parent: [1x1 Axes]
 PickableParts: 'visible'
 Selected: 'off'
 SelectionHighlight: 'on'
 SpecularColorReflectance: 1
 SpecularExponent: 10
 SpecularStrength: 0
 Tag: ''
 Type: 'surface'
 UIContextMenu: [0x0 GraphicsPlaceholder]
 UserData: []
 VertexNormals: [50x50x3 double]
 VertexNormalsMode: 'auto'

 Changing Surface Properties

1-17

 Visible: 'on'
 XData: [50x50 double]
 XDataMode: 'manual'
 XDataSource: ''
 YData: [50x50 double]
 YDataMode: 'manual'
 YDataSource: ''
 ZData: [50x50 double]
 ZDataSource: ''

1 Surface and Mesh Plots

1-18

Creating the MATLAB Logo
This example shows how to create and display the MATLAB® logo.

Use the membrane command to generate the surface data for the logo.

L = 160*membrane(1,100);

Create a figure and an axes to display the logo. Then, create a surface for the logo using
the points from the membrane command. Turn off the lines in the surface.

f = figure;
ax = axes;

s = surface(L);
s.EdgeColor = 'none';
view(3)

 Creating the MATLAB Logo

1-19

Adjust the axes limits so that the axes are tight around the logo.

ax.XLim = [1 201];
ax.YLim = [1 201];
ax.ZLim = [-53.4 160];

1 Surface and Mesh Plots

1-20

Adjust the view of the logo using the camera properties of the axes. Camera properties
control the view of a three dimensional scene like a camera with a zoom lens.

ax.CameraPosition = [-145.5 -229.7 283.6];
ax.CameraTarget = [77.4 60.2 63.9];
ax.CameraUpVector = [0 0 1];
ax.CameraViewAngle = 36.7;

 Creating the MATLAB Logo

1-21

Change the position of the axes and the x, y, and z aspect ratio to fill the extra space in
the figure window.

ax.Position = [0 0 1 1];
ax.DataAspectRatio = [1 1 .9];

1 Surface and Mesh Plots

1-22

Create lights to illuminate the logo. The light itself is not visible but its properties can be
set to change the appearance of any patch or surface object in the axes.

l1 = light;
l1.Position = [160 400 80];
l1.Style = 'local';
l1.Color = [0 0.8 0.8];

l2 = light;
l2.Position = [.5 -1 .4];
l2.Color = [0.8 0.8 0];

 Creating the MATLAB Logo

1-23

Change the color of the logo.

s.FaceColor = [0.9 0.2 0.2];

1 Surface and Mesh Plots

1-24

Use the lighting and specular (reflectance) properties of the surface to control the
lighting effects.

s.FaceLighting = 'gouraud';
s.AmbientStrength = 0.3;
s.DiffuseStrength = 0.6;
s.BackFaceLighting = 'lit';

s.SpecularStrength = 1;
s.SpecularColorReflectance = 1;
s.SpecularExponent = 7;

 Creating the MATLAB Logo

1-25

Turn the axis off to see the final result.

axis off
f.Color = 'black';

1 Surface and Mesh Plots

1-26

 Creating the MATLAB Logo

1-27

Representing Data as a Surface
In this section...
“Functions for Plotting Data Grids” on page 1-28
“Functions for Gridding and Interpolating Data” on page 1-29
“Mesh and Surface Plots” on page 1-29
“Visualizing Functions of Two Variables” on page 1-30
“Surface Plots of Nonuniformly Sampled Data” on page 1-33
“Reshaping Data” on page 1-35
“Parametric Surfaces” on page 1-38

Functions for Plotting Data Grids
MATLAB graphics defines a surface by the z-coordinates of points above a rectangular
grid in the x-y plane. The plot is formed by joining adjacent points with straight lines.
Surface plots are useful for visualizing matrices that are too large to display in numerical
form and for graphing functions of two variables.

MATLAB can create different forms of surface plots. Mesh plots are wire-frame surfaces
that color only the lines connecting the defining points. Surface plots display both the
connecting lines and the faces of the surface in color. This table lists the various forms.

Function Used to Create
mesh, surf Surface plot
meshc, surfc Surface plot with contour plot beneath it
meshz Surface plot with curtain plot (reference plane)
pcolor Flat surface plot (value is proportional only to color)
surfl Surface plot illuminated from specified direction
surface Low-level function (on which high-level functions are based)

for creating surface graphics objects

1 Surface and Mesh Plots

1-28

Functions for Gridding and Interpolating Data
These functions are useful when you need to restructure and interpolate data so that you
can represent this data as a surface.

Function Used to Create
meshgrid Rectangular grid in 2-D and 3-D space
griddata Interpolate scattered data
griddedInterpolant Interpolant for gridded data
scatteredInterpolan
t

Interpolate scattered data

For a discussion of how to interpolate data, see “Interpolating Gridded Data” and
“Interpolating Scattered Data”.

Mesh and Surface Plots
The mesh and surf commands create 3-D surface plots of matrix data. If Z is a matrix for
which the elements Z(i,j) define the height of a surface over an underlying (i,j) grid,
then

mesh(Z)

generates a colored, wire-frame view of the surface and displays it in a 3-D view.
Similarly,

surf(Z)

generates a colored, faceted view of the surface and displays it in a 3-D view. Ordinarily,
the facets are quadrilaterals, each of which is a constant color, outlined with black mesh
lines, but the shading command allows you to eliminate the mesh lines (shading flat)
or to select interpolated shading across the facet (shading interp).

Surface object properties provide additional control over the visual appearance of the
surface. You can specify edge line styles, vertex markers, face coloring, lighting
characteristics, and so on.

 Representing Data as a Surface

1-29

Visualizing Functions of Two Variables
1 To display a function of two variables, z = f(x,y), generate X and Y matrices

consisting of repeated rows and columns, respectively, over the domain of the
function. You will use these matrices to evaluate and graph the function.

2 The meshgrid function transforms the domain specified by two vectors, x and y, into
matrices X and Y. You then use these matrices to evaluate functions of two variables:
The rows of X are copies of the vector x and the columns of Y are copies of the vector
y.

Example 1.1. Example: Illustrating the Use of meshgrid

To illustrate the use of meshgrid, consider the sin(r)/r or sinc function. To evaluate
this function between -8 and 8 in both x and y, you need pass only one vector argument to
meshgrid, which is then used in both directions.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;

The matrix R contains the distance from the center of the matrix, which is the origin.
Adding eps prevents the divide by zero (in the next step) that produces Inf values in the
data.

Forming the sinc function and plotting Z with mesh results in the 3-D surface.

Z = sin(R)./R;
figure
mesh(X,Y,Z)

1 Surface and Mesh Plots

1-30

Hidden Line Removal

By default, MATLAB removes lines that are hidden from view in mesh plots, even though
the faces of the plot are not filled. You can disable hidden line removal and allow the faces
of a mesh plot to be transparent with the hidden command:

hidden off

 Representing Data as a Surface

1-31

Emphasizing Surface Shape

MATLAB provides a number of techniques that can enhance the information content of
your graphs. For example, this graph of the sinc function uses the same data as the
previous graph, but employs lighting, view adjustments, and a different colormap to
emphasize the shape of the graphed function (daspect, axis, view, camlight).

figure
colormap hsv
surf(X,Y,Z,'FaceColor','interp',...
 'EdgeColor','none',...
 'FaceLighting','gouraud')
daspect([5 5 1])
axis tight

1 Surface and Mesh Plots

1-32

view(-50,30)
camlight left

See the surf function for more information on surface plots.

Surface Plots of Nonuniformly Sampled Data
You can use meshgrid to create a grid of uniformly sampled data points at which to
evaluate and graph the sinc function. MATLAB then constructs the surface plot by
connecting neighboring matrix elements to form a mesh of quadrilaterals.

 Representing Data as a Surface

1-33

To produce a surface plot from nonuniformly sampled data, use scatteredInterpolant
to interpolate the values at uniformly spaced points, and then use mesh and surf in the
usual way.

Example – Displaying Nonuniform Data on a Surface

This example evaluates the sinc function at random points within a specific range and
then generates uniformly sampled data for display as a surface plot. The process involves
these tasks:

• Use linspace to generate evenly spaced values over the range of your unevenly
sampled data.

• Use meshgrid to generate the plotting grid with the output of linspace.
• Use scatteredInterpolant to interpolate the irregularly sampled data to the

regularly spaced grid returned by meshgrid.
• Use a plotting function to display the data.

1 Generate unevenly sampled data within the range [-8, 8] and use it to evaluate the
function:

x = rand(100,1)*16 - 8;
y = rand(100,1)*16 - 8;
r = sqrt(x.^2 + y.^2) + eps;
z = sin(r)./r;

2 The linspace function provides a convenient way to create uniformly spaced data
with the desired number of elements. The following statements produce vectors over
the range of the random data with the same resolution as that generated by the
-8:.5:8 statement in the previous sinc example:

xlin = linspace(min(x),max(x),33);
ylin = linspace(min(y),max(y),33);

3 Now use these points to generate a uniformly spaced grid:

[X,Y] = meshgrid(xlin,ylin);
4 The key to this process is to use scatteredInterpolant to interpolate the values

of the function at the uniformly spaced points, based on the values of the function at
the original data points (which are random in this example). This statement uses the
default linear interpolation to generate the new data:

f = scatteredInterpolant(x,y,z);
Z = f(X,Y);

1 Surface and Mesh Plots

1-34

5 Plot the interpolated and the nonuniform data to produce:

figure
mesh(X,Y,Z) %interpolated
axis tight; hold on
plot3(x,y,z,'.','MarkerSize',15) %nonuniform

Reshaping Data
Suppose you have a collection of data with the following (X, Y, Z) triplets:

 Representing Data as a Surface

1-35

X Y Z
1 1 152
2 1 89
3 1 100
4 1 100
5 1 100
1 2 103
2 2 0
3 2 100
4 2 100
5 2 100
1 3 89
2 3 13
3 3 100
4 3 100
5 3 100
1 4 115
2 4 100
3 4 187
4 4 200
5 4 111
1 5 100
2 5 85
3 5 111
4 5 97
5 5 48

You can represent data that is in vector form using various MATLAB graph types, such as
surf, contour, and stem3, by first restructuring the data. Use the (X, Y) values to define

1 Surface and Mesh Plots

1-36

the coordinates in an x-y plane at which there is a Z value. The reshape and transpose
functions can restructure your data so that the (X, Y, Z) triplets form a rectangular grid:

x = reshape(X,5,5)';
y = reshape(Y,5,5)';
z = reshape(Z,5,5)';

Reshaping results in three 5–by-5 arrays:

x =

 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5

y =

 1 1 1 1 1
 2 2 2 2 2
 3 3 3 3 3
 4 4 4 4 4
 5 5 5 5 5

z =

 152 89 100 100 100
 103 0 100 100 100
 89 13 100 100 100
 115 100 187 200 111
 100 85 111 97 48

You can now represent the values of Z with respect to X and Y. For example, create a 3–D
stem graph:

stem3(x,y,z,'MarkerFaceColor','g')

 Representing Data as a Surface

1-37

Parametric Surfaces
The functions that draw surfaces can take two additional vector or matrix arguments to
describe surfaces with specific x and y data. If Z is an m-by-n matrix, x is an n-vector, and
y is an m-vector, then

mesh(x,y,Z,C)

describes a mesh surface with vertices having color C(i,j) and located at the points

(x(j), y(i), Z(i,j))

where x corresponds to the columns of Z and y to its rows.

1 Surface and Mesh Plots

1-38

More generally, if X, Y, Z, and C are matrices of the same dimensions, then

mesh(X,Y,Z,C)

describes a mesh surface with vertices having color C(i,j) and located at the points

(X(i,j), Y(i,j), Z(i,j))

This example uses spherical coordinates to draw a sphere and color it with the pattern of
pluses and minuses in a Hadamard matrix, an orthogonal matrix used in signal processing
coding theory. The vectors theta and phi are in the range -π ≤ theta ≤ π and -π/2 ≤
phi ≤ π/2. Because theta is a row vector and phi is a column vector, the multiplications
that produce the matrices X, Y, and Z are vector outer products.

figure
k = 5;
n = 2^k-1;
theta = pi*(-n:2:n)/n;
phi = (pi/2)*(-n:2:n)'/n;
X = cos(phi)*cos(theta);
Y = cos(phi)*sin(theta);
Z = sin(phi)*ones(size(theta));
colormap([0 0 0;1 1 1])
C = hadamard(2^k);
surf(X,Y,Z,C)
axis square

 Representing Data as a Surface

1-39

1 Surface and Mesh Plots

1-40

Polygons

• “Introduction to Patch Objects” on page 2-2
• “Multifaceted Patches” on page 2-7

2

Introduction to Patch Objects

In this section...
“What Are Patch Objects?” on page 2-2
“Behavior of the patch Function” on page 2-3
“Creating a Single Polygon” on page 2-4

What Are Patch Objects?
A patch graphics object is composed of one or more polygons that may or may not be
connected. Patches are useful for modeling real-world objects such as airplanes or
automobiles, and for drawing 2- or 3-D polygons of arbitrary shape.

In contrast, surface objects are rectangular grids of quadrilaterals and are better suited
for displaying planar topographies such as the values of mathematical functions of two
variables, the contours of data in a rectangular plane, or parameterized surfaces such as
spheres.

A number of MATLAB functions create patch objects — fill, fill3, isosurface,
isocaps, some of the contour functions, and patch. This section concentrates on use of
the patch function.

You define a patch by specifying the coordinates of its vertices and some form of color
data. Patches support a variety of coloring options that are useful for visualizing data
superimposed on geometric shapes.

There are two ways to specify a patch:

• By specifying the coordinates of the vertices of each polygon, which are connected to
form the patch

• By specifying the coordinates of each unique vertex and a matrix that specifies how to
connect these vertices to form the faces

The second technique is preferred for multifaceted patches because it generally requires
less data to define the patch; vertices shared by more than one face need be defined only
once. This section provides examples of both techniques.

2 Polygons

2-2

Behavior of the patch Function
There are two forms of the patch function -- high-level syntax and low-level syntax. The
behavior of the patch function differs somewhat depending on which syntax you use.

High-Level Syntax

When you use the high-level syntax, MATLAB automatically determines how to color each
face based on the color data you specify. The high-level syntax enables you to omit the
property names for the x-, y-, and z-coordinates and the color data, as long as you specify
these arguments in the correct order.

patch(x-coordinates,y-coordinates,z-coordinates,colordata)

However, you must specify color data so MATLAB can determine what type of coloring to
use. If you do not specify color data, MATLAB returns an error.

x = [0 1 1 0];
y = [0 0 1 1];
patch(x,y)
Error using patch
Not enough input arguments.

Low-Level Syntax

The low-level syntax accepts only property name/property value pairs as arguments and
does not automatically color the faces unless you also change the value of the FaceColor
property. For example, the statement

patch('XData',x,'YData',y)

draws a patch with black face color because the factory default value for the FaceColor
property is the color black.

get(groot,'FactoryPatchFaceColor')
ans =
 0 0 0

See the list of Patch in the MATLAB Function Reference and the get command for
information on how to obtain the factory and user default values for properties.

Interpreting the Color Argument

When you use the high-level syntax, MATLAB interprets the third (or fourth if there are z-
coordinates) argument as color data. If you intend to define a patch with x-, y-, and z-

 Introduction to Patch Objects

2-3

coordinates, but leave out the color, MATLAB interprets the z-coordinates as color data,
and then draws a 2-D patch. For example,

patch(x,y,1:length(x))

draws a patch with all vertices at z = 0, colored by interpolating the vertex colors (since
there is one color for each vertex), whereas

patch(x,y,1:length(x),'y')

draws a patch with vertices at increasing values of z, colored yellow.

“How Patch Data Relates to a Colormap” provides more information on options for
coloring patches.

Creating a Single Polygon
A polygon is simply a patch with one face. To create a polygon, specify the coordinates of
the vertices and color data with a statement of the form

patch(x-coordinates,y-coordinates,[z-coordinates],colordata)

For example, these statements display a 10-sided polygon with a yellow face enclosed by
a black edge. The axis equal command produces a correctly proportioned polygon.

t = 0:pi/5:2*pi;
figure
patch(sin(t),cos(t),'y')
axis equal

2 Polygons

2-4

The first and last vertices need not coincide; MATLAB automatically closes each polygonal
face of the patch. In fact, it is generally better to define each vertex only once,
particularly if you are using interpolated face coloring.

Interpolated Face Colors

You can control many aspects of the patch coloring. For example, instead of specifying a
single color, provide a range of numerical values that map the color at each vertex to a
color in the figure colormap.

a = t(1:length(t)-1); %remove redundant vertex definition
figure
patch(sin(a),cos(a),1:length(a),'FaceColor','interp')
axis equal

 Introduction to Patch Objects

2-5

MATLAB now interpolates the colors across the face of the patch. You can color the edges
of the patch the same way, by setting the edge colors to be interpolated. The command is

patch(sin(a),cos(a),1:length(a),'EdgeColor','interp')

“How Patch Data Relates to a Colormap” provides more information on options for
coloring patches.

2 Polygons

2-6

Multifaceted Patches

Example — Defining a Cube
A cube is defined by eight vertices that form six sides. This illustration shows the x-, y-,
and z-coordinates of the vertices defining a cube in which the sides are one unit in length.

If you specify the x-, y-, and z-coordinate arguments as vectors, they render as a single
polygon with points connected in sequence. If the arguments are matrices, MATLAB
draws one polygon per column, producing a single patch with multiple faces. These faces
need not be connected and can be self-intersecting.

Alternatively, you can specify the coordinates of each unique vertex and the order in
which to connect them to form the faces. The examples in this section illustrate both
techniques.

Specifying X, Y, and Z Coordinates

Each of the six faces has four vertices. Because you do not need to close each polygon
(i.e., the first and last vertices do not need to be the same), you can define this cube using
a 4-by-6 matrix for each of the x-, y-, and z-coordinates.

 Multifaceted Patches

2-7

Each column of the matrices specifies a different face. While there are only eight vertices,
you must specify 24 vertices to define all six faces. Since each face shares vertices with
four other faces, you can define the patch more efficiently by defining each vertex only
once and then specifying the order in which to connect these vertices to form each face.
The patch Vertices and Faces properties define patches in just this way.

Specifying Faces and Vertices

These matrices specify the cube using Vertices and Faces.

Using the vertices/faces technique can save a considerable amount of computer memory
when patches contain a large number of faces. This technique requires the formal patch
function syntax, which entails assigning values to the Vertices and Faces properties
explicitly. For example,

patch('Vertices',vertex_matrix,'Faces',faces_matrix)

2 Polygons

2-8

Because the high-level syntax does not automatically assign face or edge colors, you must
set the appropriate properties to produce patches with colors other than the default white
face color and black edge color.

Flat Face Color

Flat face color is the result of specifying one color per face. For example, using the
vertices/faces technique and the FaceVertexCData property to define color, this
statement specifies one color per face and sets the FaceColor property to flat.

vert = [0 0 0;1 0 0;1 1 0;0 1 0;0 0 1;1 0 1;1 1 1;0 1 1];
fac = [1 2 6 5;2 3 7 6;3 4 8 7;4 1 5 8;1 2 3 4;5 6 7 8];
patch('Vertices',vert,'Faces',fac,...
 'FaceVertexCData',hsv(6),'FaceColor','flat')

Adjust the axes:

view(3)
axis vis3d

Because truecolor specified with the FaceVertexCData property has the same format as
a MATLAB colormap (i.e., an n-by-3 array of RGB values), this example uses the hsv
colormap to generate the six colors required for flat shading.

 Multifaceted Patches

2-9

To map face colors to the current colormap, assign an n-by-1 array to the
FaceVertexCData property:

patch('Vertices',vert,'Faces',fac,...
 'FaceVertexCData',(1:6)','FaceColor','flat')

Adjust the axes:

view(3)
axis vis3d

2 Polygons

2-10

Interpolated Face Color

Interpolated face color means the vertex colors of each face define a transition of color
from one vertex to the next. To interpolate the colors between vertices, you must specify a
color for each vertex and set the FaceColor property to interp.

patch('Vertices',vert,'Faces',fac,...
 'FaceVertexCData',hsv(8),'FaceColor','interp')

Adjust the axes:

view(3)
axis vis3d

produces a cube with each face colored by interpolating the vertex colors.

 Multifaceted Patches

2-11

To specify the same coloring using the x, y, z, c technique, c must be an m-by-n-by-3 array,
where the dimensions of x, y, and z are m-by-n.

This diagram shows the correspondence between the FaceVertexCData and CData
properties.

2 Polygons

2-12

“How Patch Data Relates to a Colormap” discusses coloring techniques in more detail.

 Multifaceted Patches

2-13

Volume Visualization

• “Overview of Volume Visualization” on page 3-2
• “Techniques for Visualizing Scalar Volume Data” on page 3-6
• “Exploring Volumes with Slice Planes” on page 3-14
• “Connecting Equal Values with Isosurfaces” on page 3-22
• “Isocaps Add Context to Visualizations” on page 3-24
• “Visualizing Vector Volume Data” on page 3-30
• “Stream Line Plots of Vector Data” on page 3-37
• “Displaying Curl with Stream Ribbons” on page 3-40
• “Displaying Divergence with Stream Tubes” on page 3-43
• “Creating Stream Particle Animations” on page 3-47
• “Vector Field Displayed with Cone Plots” on page 3-52
• “Visualizing Volume Data” on page 3-56
• “Visualizing Four-Dimensional Data” on page 3-63
• “Displaying Complex Three-Dimensional Objects” on page 3-70
• “Displaying Topographic Data” on page 3-79

3

Overview of Volume Visualization

In this section...
“Examples of Volume Data” on page 3-2
“Selecting Visualization Techniques” on page 3-3
“Steps to Create a Volume Visualization” on page 3-3
“Volume Visualization Functions” on page 3-4

Examples of Volume Data
Volume visualization is the creation of graphical representations of data sets that are
defined on three-dimensional grids. Volume data sets are characterized by
multidimensional arrays of scalar or vector data. These data are typically defined on
lattice structures representing values sampled in 3-D space. There are two basic types of
volume data:

• Scalar volume data contains single values for each point.
• Vector volume data contains two or three values for each point, defining the

components of a vector.

An example of scalar volume data is that produced by flow. The flow data represents the
speed profile of a submerged jet within an infinite tank. Typing

[x,y,z,v] = flow;

produces four 3-D arrays. The x, y, and z arrays specify the coordinates of the scalar
values in the array v.

The wind data set is an example of vector volume data that represents air currents over
North America. You can load this data in the MATLAB workspace with the command:

load wind

This data set comprises six 3-D arrays: x, y, and z are the coordinate data for the arrays
u, v, and w, which are the vector components for each point in the volume.

3 Volume Visualization

3-2

Selecting Visualization Techniques
The techniques you select to visualize volume data depend on what type of data you have
and what you want to learn. In general:

• Scalar data is best viewed with isosurfaces, slice planes, and contour slices.
• Vector data represents both a magnitude and direction at each point, which is best

displayed by stream lines (particles, ribbons, and tubes), cone plots, and arrow plots.
Most visualizations, however, employ a combination of techniques to best reveal the
content of the data.

The material in these sections describes how to apply a variety of techniques to typical
volume data.

Interpolating and Gridding Data

MATLAB provides functions that enable you to interpolate and restructure you data in
preparation for visualization. See these sections for more information:

• “Interpolating Gridded Data”
• “Interpolating Scattered Data”

Steps to Create a Volume Visualization
Creating an effective visualization requires a number of steps to compose the final scene.
These steps fall into four basic categories:

1 Determine the characteristics of your data. Graphing volume data usually requires
knowledge of the range of both the coordinates and the data values.

2 Select an appropriate plotting routine. The information in this section helps you
select the right methods.

3 Define the view. The information conveyed by a complex three-dimensional graph can
be greatly enhanced through careful composition of the scene. Viewing techniques
include adjusting camera position, specifying aspect ratio and project type, zooming
in or out, and so on.

4 Add lighting and specify coloring. Lighting is an effective means to enhance the
visibility of surface shape and to provide a three-dimensional perspective to volume
graphs. Color can convey data values, both constant and varying.

 Overview of Volume Visualization

3-3

Volume Visualization Functions
MATLAB functions enable you to apply a variety of volume visualization techniques. The
following tables group these functions into two categories based on the type of data
(scalar or vector) that each is designed to work with. The reference page for each
function provides examples of the intended use.

Functions for Scalar Data

Function Purpose
contourslice Draw contours in volume slice planes
isocaps Compute isosurface end-cap geometry
isocolors Compute the colors of isosurface vertices
isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data
patch Create a patch (multipolygon) graphics object
reducepatch Reduce the number of patch faces
reducevolume Reduce the number of elements in a volume data set
shrinkfaces Reduce the size of each patch face
slice Draw slice planes in volume
smooth3 Smooth 3-D data
surf2patch Convert surface data to patch data
subvolume Extract subset of volume data set

Functions for Vector Data

Function Purpose
coneplot Plot velocity vectors as cones in 3-D vector fields
curl Compute the curl and angular velocity of a 3-D vector field
divergence Compute the divergence of a 3-D vector field
interpstreamspeed Interpolate streamline vertices from vector-field magnitudes
streamline Draw stream lines from 2-D or 3-D vector data
streamparticles Draw stream particles from vector volume data

3 Volume Visualization

3-4

Function Purpose
streamribbon Draw stream ribbons from vector volume data
streamslice Draw well-spaced stream lines from vector volume data
streamtube Draw stream tubes from vector volume data
stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data
volumebounds Return coordinate and color limits for volume (scalar and

vector)

 Overview of Volume Visualization

3-5

Techniques for Visualizing Scalar Volume Data
In this section...
“What Is Scalar Volume Data?” on page 3-6
“Ways to Display MRI Data” on page 3-6

What Is Scalar Volume Data?
Typical scalar volume data is composed of a 3-D array of data and three coordinate arrays
of the same dimensions. The coordinate arrays specify the x-, y-, and z-coordinates for
each data point.

The units of the coordinates depend on the type of data. For example, flow data might
have coordinate units of inches and data units of psi.

A number of MATLAB functions are useful for visualizing scalar data:

• Slice planes provide a way to explore the distribution of data values within the volume
by mapping values to colors. You can orient slice planes at arbitrary angles, as well as
use nonplanar slices. (For illustrations of how to use slice planes, see slice, a volume
slicing on page 3-14 example, and slice planes used to show context. on page 3-24)
You can specify the data used to color isosurfaces, enabling you to display different
information in color and surface shape (see isocolors).

• Contour slices are contour plots drawn at specific coordinates within the volume.
Contour plots enable you to see where in a given plane the data values are equal. See
contourslice for an example.

• Isosurfaces are surfaces constructed by using points of equal value as the vertices of
patch graphics objects.

Ways to Display MRI Data
• “Changing the Data Format” on page 3-7
• “Displaying Images of MRI Data” on page 3-7
• “Displaying a 2-D Contour Slice” on page 3-8
• “Displaying 3-D Contour Slices” on page 3-10
• “Applying an Isosurface to the MRI Data” on page 3-11

3 Volume Visualization

3-6

• “Adding Isocaps Show Cut-Away Surface” on page 3-11
• “Defining the View” on page 3-11
• “Add Lighting” on page 3-11

An example of scalar data includes magnetic resonance imaging (MRI) data. This data
typically contains a number of slice planes taken through a volume, such as the human
body. MATLAB includes an MRI data set that contains 27 image slices of a human head.
This example illustrate the following techniques applied to MRI data:

• A series of 2-D images on page 3-7 representing slices through the head
• 2-D on page 3-8 and 3-D on page 3-10 contour slices taken at arbitrary locations

within the data
• An isosurface with isocaps on page 3-11 showing a cross section of the interior

Changing the Data Format

The MRI data, D, is stored as a 128-by-128-by-1-by-27 array. The third array dimension is
used typically for the image color data. However, since these are indexed images (a
colormap, map, is also loaded) there is no information in the third dimension, which you
can remove using the squeeze command. The result is a 128-by-128-by-27 array.

The first step is to load the data and transform the data array from 4-D to 3-D.

load mri
D = squeeze(D);

Displaying Images of MRI Data

To display one of the MRI images, use the image command:

• Create a new figure that uses the MRI colormap, which is loaded with the data:
• Index into the data array to obtain the data for the eighth image.
• Adjust axis scaling.

figure
colormap(map)
image_num = 8;
image(D(:,:,image_num))
axis image

 Techniques for Visualizing Scalar Volume Data

3-7

Save the x- and y-axis limits for use in the next part of the example:

x = xlim;
y = ylim;

Displaying a 2-D Contour Slice

Visualize MRI data as a volume data because it is a collection of slices taken progressively
through the 3-D object. Use contourslice to display a contour plot of a volume slice.
Create a contour plot with the same orientation and size as the image created in the first
part of this example:

• Adjust the y-axis direction (axis).

3 Volume Visualization

3-8

• Set the limits (xlim, ylim).
• Set the data aspect ratio (daspect).

To improve the visibility of details, this contour plot uses the jet colormap. The
brighten function reduces the brightness of the color values.

cm = brighten(jet(length(map)),-.5);
figure
colormap(cm)
contourslice(D,[],[],image_num)
axis ij
xlim(x)
ylim(y)
daspect([1,1,1])

 Techniques for Visualizing Scalar Volume Data

3-9

Displaying 3-D Contour Slices

Unlike images, which are 2-D objects, contour slices are 3-D objects that you can display
in any orientation. For example, you can display four contour slices in a 3-D view.

figure
colormap(cm)
contourslice(D,[],[],[1,12,19,27],8);
view(3);
axis tight

3 Volume Visualization

3-10

Applying an Isosurface to the MRI Data

You can use isosurfaces to display the overall structure of a volume. When combined with
isocaps, this technique can reveal information about data on the interior of the isosurface.

First, smooth the data with smooth3; then use isosurface to calculate the isodata. Use
patch to display this data in a figure that uses the original gray scale color map for the
isocaps.

figure
colormap(map)
Ds = smooth3(D);
hiso = patch(isosurface(Ds,5),...
 'FaceColor',[1,.75,.65],...
 'EdgeColor','none');
 isonormals(Ds,hiso)

The isonormals function to renders the isosurface using vertex normals obtained from
the smoothed data, improving the quality of the isosurface. The isosurface uses a single
color to represent its isovalue.

Adding Isocaps Show Cut-Away Surface

Use isocaps to calculate the data for another patch that is displayed at the same
isovalue (5) as the isosurface. Use the unsmoothed data (D) to show details of the interior.
You can see this as the sliced-away top of the head. The lower isocap is not visible in the
final view.

hcap = patch(isocaps(D,5),...
 'FaceColor','interp',...
 'EdgeColor','none');

Defining the View

Define the view and set the aspect ratio (view, axis, daspect).

view(35,30)
axis tight
daspect([1,1,.4])

Add Lighting

Add lighting and recalculate the surface normals based on the gradient of the volume
data, which produces smoother lighting (camlight, lighting, isonormals). Increase

 Techniques for Visualizing Scalar Volume Data

3-11

the AmbientStrength property of the isocap to brighten the coloring without affecting
the isosurface. Set the SpecularColorReflectance of the isosurface to make the color
of the specular reflected light closer to the color of the isosurface; then set the
SpecularExponent to reduce the size of the specular spot.

lightangle(45,30);
lighting gouraud
hcap.AmbientStrength = 0.6;
hiso.SpecularColorReflectance = 0;
hiso.SpecularExponent = 50;

An Isocap combined with an isosurface to visualize MRI data.

3 Volume Visualization

3-12

The isocaps use interpolated face coloring, which means the figure colormap determines
the coloring of the patch. This example uses the colormap supplied with the data.

To display isocaps at other data values, try changing the isosurface value or use the
subvolume command. See the isocaps and subvolume reference pages for examples.

 Techniques for Visualizing Scalar Volume Data

3-13

Exploring Volumes with Slice Planes
In this section...
“Slicing Fluid Flow Data” on page 3-14
“Modify the Color Mapping” on page 3-18

Slicing Fluid Flow Data
A slice plane (which does not have to be planar) is a surface that takes on coloring based
on the values of the volume data in the region where the slice is positioned. Slice planes
are useful for probing volume data sets to discover where interesting regions exist, which
you can then visualize with other types of graphs (see the slice example). Slice planes
are also useful for adding a visual context to the bound of the volume when other
graphing methods are also used (see coneplot and “Stream Line Plots of Vector Data”
on page 3-37 for examples).

Use the slice function to create slice planes. This example slices through a volume
generated by flow.

1. Investigate the Data

Generate the volume data with the command:

[x,y,z,v] = flow;

Determine the range of the volume by finding the minimum and maximum of the
coordinate data.

xmin = min(x(:));
ymin = min(y(:));
zmin = min(z(:));

xmax = max(x(:));
ymax = max(y(:));
zmax = max(z(:));

2. Slice Plane at an Angle to the X-Axes

To create a slice plane that does not lie in an axes plane, first define a surface and rotate
it to the desired orientation. This example uses a surface that has the same x- and y-
coordinates as the volume.

3 Volume Visualization

3-14

hslice = surf(linspace(xmin,xmax,100),...
 linspace(ymin,ymax,100),...
 zeros(100));

Rotate the surface by -45 degrees about the x-axis and save the surface XData, YData,
and ZData to define the slice plane; then delete the surface.

rotate(hslice,[-1,0,0],-45)
xd = get(hslice,'XData');
yd = get(hslice,'YData');
zd = get(hslice,'ZData');

delete(hslice)

3. Draw the Slice Planes

Draw the rotated slice plane, setting the FaceColor to interp so that it is colored by
the figure colormap, and set the EdgeColor to none. Increase the DiffuseStrength
to .8 to make this plane shine more brightly after adding a light source.

figure
colormap(jet)
h = slice(x,y,z,v,xd,yd,zd);
h.FaceColor = 'interp';
h.EdgeColor = 'none';
h.DiffuseStrength = 0.8;

 Exploring Volumes with Slice Planes

3-15

Set hold to on and add three more orthogonal slice planes at xmax, ymax, and zmin to
provide a context for the first plane, which slices through the volume at an angle.

hold on
hx = slice(x,y,z,v,xmax,[],[]);
hx.FaceColor = 'interp';
hx.EdgeColor = 'none';

hy = slice(x,y,z,v,[],ymax,[]);
hy.FaceColor = 'interp';
hy.EdgeColor = 'none';

hz = slice(x,y,z,v,[],[],zmin);

3 Volume Visualization

3-16

hz.FaceColor = 'interp';
hz.EdgeColor = 'none';

4. Define the View

To display the volume in correct proportions, set the data aspect ratio to [1,1,1]
(daspect). Adjust the axis to fit tightly around the volume (axis). The orientation of the
axes can be selected initially using rotate3d to determine the best view.

Zooming in on the scene provides a larger view of the volume (camzoom). Selecting a
projection type of perspective gives the rectangular solid more natural proportions
than the default orthographic projection (camproj).

daspect([1,1,1])
axis tight
view(-38.5,16)
camzoom(1.4)
camproj perspective

5. Add Lighting and Specify Colors

Adding a light to the scene makes the boundaries between the four slice planes more
obvious because each plane forms a different angle with the light source (lightangle).
Selecting a colormap with only 24 colors (the default is 64) creates visible gradations that
help indicate the variation within the volume.

lightangle(-45,45)
colormap (jet(24))

 Exploring Volumes with Slice Planes

3-17

“Modify the Color Mapping” on page 3-18 shows how to modify how the data is mapped
to color.

Modify the Color Mapping
The current colormap determines the coloring of the slice planes. This enables you to
change the slice plane coloring by:

• Changing the colormap
• Changing the mapping of data value to color

3 Volume Visualization

3-18

Suppose, for example, you are interested in data values only between -5 and 2.5 and
would like to use a colormap that mapped lower values to reds and higher values to blues
(that is, the opposite of the default jet colormap).

1. Customize the Colormap

Flip the colormap using colormap and flipud:

colormap (flipud(jet(24)))

2. Adjust the Color Limits

Adjust the color limits to emphasize any particular data range of interest. Adjust the color
limits to range from -5 to 2.4832 to map any value lower than the value -5 (the original

 Exploring Volumes with Slice Planes

3-19

data ranged from -11.5417 to 2.4832) into the same color. For information about color
mapping, see the caxis function.

caxis([-5,2.4832])

3. Add a Color Bar

Add a color bar to provide a key for the data-to-color mapping.

colorbar('horiz')

3 Volume Visualization

3-20

 Exploring Volumes with Slice Planes

3-21

Connecting Equal Values with Isosurfaces

Isosurfaces in Fluid Flow Data
Create isosurfaces with the isosurface and patch commands.

This example creates isosurfaces in a volume generated by flow. Generate the volume
data with the command:

[x,y,z,v] = flow;

To select the isovalue, determine the range of values in the volume data.

min(v(:))
ans =
 -11.5417
max(v(:))
ans =
 2.4832

Through exploration, you can select isovalues that reveal useful information about the
data. Once selected, use the isovalue to create the isosurface:

• Use isosurface to generate data that you can pass directly to patch.
• Recalculate the surface normals from the gradient of the volume data to produce

better lighting characteristics (isonormals).
• Set the patch FaceColor to red and the EdgeColor to none to produce a smoothly lit

surface.
• Adjust the view and add lighting (daspect, view, camlight, lighting).

hpatch = patch(isosurface(x,y,z,v,0));
isonormals(x,y,z,v,hpatch)
hpatch.FaceColor = 'red';
hpatch.EdgeColor = 'none';
daspect([1,4,4])
view([-65,20])
axis tight
camlight left;
lighting gouraud

3 Volume Visualization

3-22

 Connecting Equal Values with Isosurfaces

3-23

Isocaps Add Context to Visualizations
In this section...
“What Are Isocaps?” on page 3-24
“Other Isocap Applications” on page 3-26
“Defining Isocaps” on page 3-26
“Adding Isocaps to an Isosurface” on page 3-27

What Are Isocaps?
Isocaps are planes that are fitted to the limits of an isosurface to provide a visual context
for the isosurface. Isocaps show a cross-sectional view of the interior of the isosurface for
which the isocap provides an end cap.

The following two pictures illustrate the use of isocaps. The first is an isosurface without
isocaps.

3 Volume Visualization

3-24

The second picture shows the effect of adding isocaps to the same isosurface.

 Isocaps Add Context to Visualizations

3-25

Other Isocap Applications
Some additional applications of isocaps are shown in the following examples:

• Isocaps show the interior of a cut-away volume.
• Isocaps cap the end of a volume that would otherwise appear empty. on page 3-11
• Isocaps enhance the visibility of the isosurface limits. on page 3-24

Defining Isocaps
Isocaps, like isosurfaces, are created as patch graphics objects. Use the isocaps
command to generate the data to pass to patch. For example:

patch(isocaps(voldata,isoval),...
 'FaceColor','interp',...
...'EdgeColor','none')

3 Volume Visualization

3-26

creates isocaps for the scalar volume data voldata at the value isoval. You should
create the isosurface using the same volume data and isovalue to ensure that the edges of
the isocaps fit the isosurface.

Setting the patch FaceColor property to interp results in a coloring that maps the data
values spanned by the isocap to colormap entries. You can also set other patch properties
to control the effects of lighting and coloring on the isocaps.

Adding Isocaps to an Isosurface
This example illustrates how to set coloring and lighting characteristics when working
with isocaps. There are five basic steps:

1 Generate and process your volume data. on page 3-27
2 Create the isosurface and isocaps and set patch properties to control the coloring and

lighting. on page 3-27
3 Create the isocaps and set properties. on page 3-28
4 Specify the view. on page 3-28
5 Add lights to the scene. on page 3-17

1. Prepare the Data

This example uses a 3-D array of random (rand) data to define the volume data. The data
is then smoothed (smooth3).

data = rand(12,12,12);
data = smooth3(data,'box',5);

2. Create the Isosurface and Set Properties

Use isosurface and patch to create the isosurface and set coloring and lighting
properties. Reduce the AmbientStrength, SpecularStrength, and
DiffuseStrength of the reflected light to compensate for the brightness of the two light
sources used to provide more uniform lighting.

Recalculate the vertex normals of the isosurface to produce smoother lighting
(isonormals).

isoval = .5;
h = patch(isosurface(data,isoval),...
 'FaceColor','blue',...

 Isocaps Add Context to Visualizations

3-27

 'EdgeColor','none',...
 'AmbientStrength',.2,...
 'SpecularStrength',.7,...
 'DiffuseStrength',.4);
isonormals(data,h)

3. Create the Isocaps and Set Properties

Define the isocaps using the same data and isovalue as the isosurface. Specify
interpolated coloring and select a colormap that provides better contrasting colors with
the blue isosurface than those in the default colormap (colormap).

patch(isocaps(data,isoval),...
 'FaceColor','interp',...
 'EdgeColor','none')
colormap hsv

4. Define the View

Set the data aspect ratio to [1,1,1] so that the display is in correct proportions
(daspect). Eliminate white space within the axes and set the view to 3-D (axis tight,
view).

daspect([1,1,1])
axis tight
view(3)

5. Add Lighting

To add fairly uniform lighting, but still take advantage of the ability of light sources to
make visible subtle variations in shape, this example uses two lights, one to the left and
one to the right of the camera (camlight). Use Gouraud lighting to produce the
smoothest variation of color (lighting).

camlight right
camlight left

3 Volume Visualization

3-28

 Isocaps Add Context to Visualizations

3-29

Visualizing Vector Volume Data
In this section...
“Lines, Particles, Ribbons, Streams, Tubes, and Cones” on page 3-30
“Using Scalar Techniques with Vector Data” on page 3-30
“Specifying Starting Points for Stream Plots” on page 3-31
“Accessing Subregions of Volume Data” on page 3-35

Lines, Particles, Ribbons, Streams, Tubes, and Cones
Vector volume data contains more information than scalar data because each coordinate
point in the data set has three values associated with it. These values define a vector that
represents both a magnitude and a direction. The velocity of fluid flow is an example of
vector data.

A number of techniques are useful for visualizing vector data:

• Stream lines trace the path that a massless particle immersed in the vector field would
follow.

• Stream particles are markers that trace stream lines and are useful for creating
stream line animations.

• Stream ribbons are similar to stream lines, except that the width of the ribbons
enables them to indicate twist. Stream ribbons are useful to indicate curl angular
velocity.

• Stream tubes are similar to stream lines, but you can also control the width of the
tube. Stream tubes are useful for displaying the divergence of a vector field.

• Cone plots represent the magnitude and direction of the data at each point by
displaying a conical arrowhead or an arrow.

It is typically the case that these functions best elucidate the data when used in
conjunction with other visualization techniques, such as contours, slice planes, and
isosurfaces. The examples in this section illustrate some of these techniques.

Using Scalar Techniques with Vector Data
Visualization techniques such as contour slices, slice planes, and isosurfaces require
scalar volume data. You can use these techniques with vector data by taking the

3 Volume Visualization

3-30

magnitude of the vectors. For example, the wind data set returns three coordinate arrays
and three vector component arrays, u, v, w. In this case, the magnitude of the velocity
vectors equals the wind speed at each corresponding coordinate point in the volume.

wind_speed = sqrt(u.^2 + v.^2 + w.^2);

The array wind_speed contains scalar values for the volume data. The usefulness of the
information produced by this approach, however, depends on what physical phenomenon
is represented by the magnitude of your vector data.

Specifying Starting Points for Stream Plots
Stream plots (stream lines, ribbons, tubes, and cones or arrows) illustrate the flow of a 3-
D vector field. The MATLAB stream-plotting functions (streamline, streamribbon,
streamtube, coneplot, stream2, stream3) all require you to specify the point at
which you want to begin each stream trace.

Determining the Starting Points

Generally, knowledge of your data's characteristics helps you select the starting points.
Information such as the primary direction of flow and the range of the data coordinates
helps you decide where to evaluate the data.

The streamslice function is useful for exploring your data. For example, these
statements draw a slice through the vector field at a z value midway in the range.

load wind
zmax = max(z(:)); zmin = min(z(:));
streamslice(x,y,z,u,v,w,[],[],(zmax-zmin)/2)

 Visualizing Vector Volume Data

3-31

This stream slice plot indicates that the flow is in the positive x-direction and also enables
you to select starting points in both x and y. You could create similar plots that slice the
volume in the x-z plane or the y-z plane to gain further insight into your data's range and
orientation.

Specifying Arrays of Starting-Point Coordinates

To specify the starting point for one stream line, you need the x-, y-, and z-coordinates of
the point. The meshgrid command provides a convenient way to create arrays of starting
points. For example, you could select the following starting points from the wind data
displayed in the previous stream slice.

[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);

3 Volume Visualization

3-32

This statement defines the starting points as all lying on x = 80, y ranging from 20 to 50,
and z ranging from 0 to 15. You can use plot3 to display the locations.

plot3(sx(:),sy(:),sz(:),'*r');
axis(volumebounds(x,y,z,u,v,w))
grid on
set(gca,'BoxStyle','full','Box','on')
daspect([2 2 1])

You do not need to use 3-D arrays, such as those returned by meshgrid, but the size of
each array must be the same, and meshgrid provides a convenient way to generate
arrays when you do not have an equal number of unique values in each coordinate. You
can also define starting-point arrays as column vectors. For example, meshgrid returns
3-D arrays:

 Visualizing Vector Volume Data

3-33

[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
whos

 Name Size Bytes Class Attributes

 sx 4x1x4 128 double
 sy 4x1x4 128 double
 sz 4x1x4 128 double

In addition, you could use 16-by-1 column vectors with the corresponding elements of the
three arrays composing the coordinates of each starting point. (This is the equivalent of
indexing the values returned by meshgrid as sx(:), sy(:), and sz(:).)

For example, adding the stream lines to the starting points produces:

streamline(x,y,z,u,v,w,sx(:),sy(:),sz(:))

3 Volume Visualization

3-34

Accessing Subregions of Volume Data
The subvolume function provides a simple way to access subregions of a volume data
set. subvolume enables you to select regions of interest based on limits rather than using
the colon operator to index into the 3-D arrays that define volumes. Consider the
following two approaches to creating the data for a subvolume — indexing with the colon
operator and using subvolume.

Indexing with the Colon Operator

When you index the arrays, you work with values that specify the elements in each
dimension of the array.

 Visualizing Vector Volume Data

3-35

load wind
xsub = x(1:10,20:30,1:7);
ysub = y(1:10,20:30,1:7);
zsub = z(1:10,20:30,1:7);
usub = u(1:10,20:30,1:7);
vsub = v(1:10,20:30,1:7);
wsub = w(1:10,20:30,1:7);

Using the subvolume Function

subvolume enables you to use coordinate values that you can read from the axes. For
example:

lims = [100.64 116.67 17.25 28.75 -0.02 6.86];
[xsub,ysub,zsub,usub,vsub,wsub] = subvolume(x,y,z,u,v,w,lims);

You can then use the subvolume data as inputs to any function requiring vector volume
data.

3 Volume Visualization

3-36

Stream Line Plots of Vector Data
In this section...
“Wind Mapping Data” on page 3-37
“1. Determine the Range of the Coordinates” on page 3-37
“2. Add Slice Planes for Visual Context” on page 3-37
“3. Add Contour Lines to the Slice Planes” on page 3-38
“4. Define the Starting Points for Stream Lines” on page 3-38
“5. Define the View” on page 3-38

Wind Mapping Data
The MATLAB vector data set called wind represents air currents over North America.
This example uses a combination of techniques:

• Stream lines to trace the wind velocity
• Slice planes to show cross-sectional views of the data
• Contours on the slice planes to improve the visibility of slice-plane coloring

1. Determine the Range of the Coordinates
Load the data and determine minimum and maximum values to locate the slice planes and
contour plots (load, min, max).

load wind
xmin = min(x(:));
xmax = max(x(:));
ymax = max(y(:));
zmin = min(z(:));

2. Add Slice Planes for Visual Context
Calculate the magnitude of the vector field (which represents wind speed) to generate
scalar data for the slice command. Create slice planes along the x-axis at xmin, 100,
and xmax, along the y-axis at ymax, and along the z-axis at zmin. Specify interpolated
face coloring so the slice coloring indicates wind speed, and do not draw edges (sqrt,
slice, FaceColor, EdgeColor).

 Stream Line Plots of Vector Data

3-37

wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hsurfaces = slice(x,y,z,wind_speed,[xmin,100,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')
colormap jet

3. Add Contour Lines to the Slice Planes
Draw light gray contour lines on the slice planes to help quantify the color mapping
(contourslice, EdgeColor, LineWidth).

hcont = ...
contourslice(x,y,z,wind_speed,[xmin,100,xmax],ymax,zmin);
set(hcont,'EdgeColor',[0.7 0.7 0.7],'LineWidth',0.5)

4. Define the Starting Points for Stream Lines
In this example, all stream lines start at an x-axis value of 80 and span the range 20 to 50
in the y-direction and 0 to 15 in the z-direction. Save the handles of the stream lines and
set the line width and color (meshgrid, streamline, LineWidth, Color).

[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
hlines = streamline(x,y,z,u,v,w,sx,sy,sz);
set(hlines,'LineWidth',2,'Color','r')

5. Define the View
Set up the view, expanding the z-axis to make it easier to read the graph (view, daspect,
axis).

view(3)
daspect([2,2,1])
axis tight

3 Volume Visualization

3-38

See coneplot for an example of the same data plotted with cones.

 Stream Line Plots of Vector Data

3-39

Displaying Curl with Stream Ribbons

In this section...
“What Stream Ribbons Can Show” on page 3-40
“1. Select a Subset of Data to Plot” on page 3-40
“2. Calculate Curl Angular Velocity and Wind Speed” on page 3-40
“3. Create the Stream Ribbons” on page 3-41
“4. Define the View and Add Lighting” on page 3-41

What Stream Ribbons Can Show
Stream ribbons illustrate direction of flow, similar to stream lines, but can also show
rotation about the flow axis by twisting the ribbon-shaped flow line. The streamribbon
function enables you to specify a twist angle (in radians) for each vertex in the stream
ribbons.

When used in conjunction with the curl function, streamribbon is useful for displaying
the curl angular velocity of a vector field. The following example illustrates this
technique.

1. Select a Subset of Data to Plot
Load and select a region of interest in the wind data set using subvolume. Plotting the
full data set first can help you select a region of interest.

load wind
lims = [100.64 116.67 17.25 28.75 -0.02 6.86];
[x,y,z,u,v,w] = subvolume(x,y,z,u,v,w,lims);

2. Calculate Curl Angular Velocity and Wind Speed
Calculate the curl angular velocity and the wind speed.

cav = curl(x,y,z,u,v,w);
wind_speed = sqrt(u.^2 + v.^2 + w.^2);

3 Volume Visualization

3-40

3. Create the Stream Ribbons
• Use meshgrid to create arrays of starting points for the stream ribbons. See

“Specifying Starting Points for Stream Plots” on page 3-31for information on
specifying the arrays of starting points.

• stream3 calculates the stream line vertices with a step size of .5.
• streamribbon scales the width of the ribbon by a factor of 2 to enhance the visibility

of the twisting (which indicates curl angular velocity).
• streamribbon returns the handles of the surface objects it creates, which are then

used to set the color to red (FaceColor), the color of the surface edges to light gray
(EdgeColor), and slightly increase the brightness of the ambient light reflected when
lighting is applied (AmbientStrength).

[sx sy sz] = meshgrid(110,20:5:30,1:5);
verts = stream3(x,y,z,u,v,w,sx,sy,sz,.5);
h = streamribbon(verts,x,y,z,cav,wind_speed,2);
set(h,'FaceColor','r',...
 'EdgeColor',[.7 .7 .7],...
 'AmbientStrength',.6)

4. Define the View and Add Lighting
• The volumebounds command provides a convenient way to set axis and color limits.
• Add a grid and set the view for 3-D (streamribbon does not change the current

view).
• camlight creates a light positioned to the right of the viewpoint and lighting sets

the lighting method to Gouraud.

axis(volumebounds(x,y,z,wind_speed))
grid on
view(3)
camlight right;

 Displaying Curl with Stream Ribbons

3-41

3 Volume Visualization

3-42

Displaying Divergence with Stream Tubes
In this section...
“What Stream Tubes Can Show” on page 3-43
“1. Load Data and Calculate Required Values” on page 3-43
“2. Draw the Slice Planes” on page 3-44
“3. Add Contour Lines to Slice Planes” on page 3-44
“4. Create the Stream Tubes” on page 3-44
“5. Define the View” on page 3-45

What Stream Tubes Can Show
Stream tubes are similar to stream lines, except the tubes have width, providing another
dimension that you can use to represent information.

By default, MATLAB graphics display the divergence of the vector field by the width of the
tube. You can also define widths for each tube vertex and thereby map other data to
width.

This example uses the following techniques:

• Stream tubes to indicate flow direction and divergence of the vector field in the wind
data set

• Slice planes colored to indicate the speed of the wind currents overlaid with contour
line to enhance visibility

Inputs include the coordinates of the volume, vector field components, and starting
locations for the stream tubes.

1. Load Data and Calculate Required Values
Load the data and calculate values needed to make the plots. These values include:

• The location of the slice planes (maximum x, minimum y, and a value for the altitude)
• The minimum x value for the start of the stream tubes
• The speed of the wind (magnitude of the vector field)

 Displaying Divergence with Stream Tubes

3-43

load wind
xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
alt = 7.356; % z value for slice and streamtube plane
wind_speed = sqrt(u.^2 + v.^2 + w.^2);

2. Draw the Slice Planes
Draw the slice planes (slice) and set surface properties to create a smoothly colored
slice. Use 16 colors from the hsv colormap.

hslice = slice(x,y,z,wind_speed,xmax,ymin,alt);
set(hslice,'FaceColor','interp','EdgeColor','none')
colormap hsv(16)

3. Add Contour Lines to Slice Planes
Add contour lines (contourslice) to the slice planes. Adjust the contour interval so the
lines match the color boundaries in the slice planes:

• Call caxis to get the current color limits.
• Set the interpolation method used by contourslice to linear to match the default

used by slice.

color_lim = caxis;
cont_intervals = linspace(color_lim(1),color_lim(2),17);
hcont = contourslice(x,y,z,wind_speed,xmax,ymin,...
 alt,cont_intervals,'linear');
set(hcont,'EdgeColor',[.4 .4 .4],'LineWidth',1)

4. Create the Stream Tubes
Use meshgrid to create arrays for the starting points for the stream tubes, which begin
at the minimum x value, range from 20 to 50 in y, and lie in a single plane in z
(corresponding to one of the slice planes).

The stream tubes (streamtube) are drawn at the specified locations and scaled to be
1.25 times the default width to emphasize the variation in divergence (width). The second
element in the vector [1.25 30] specifies the number of points along the circumference of

3 Volume Visualization

3-44

the tube (the default is 20). You might want to increase this value as the tube size
increases, to maintain a smooth-looking tube.

Set the data aspect ratio (daspect) before calling streamtube.

Stream tubes are surface objects, therefore you can control their appearance by setting
surface properties. This example sets surface properties to give a brightly lit, red surface.

[sx,sy,sz] = meshgrid(xmin,20:3:50,alt);
daspect([1,1,1]) % set DAR before calling streamtube
htubes = streamtube(x,y,z,u,v,w,sx,sy,sz,[1.25 30]);
set(htubes,'EdgeColor','none','FaceColor','r',...
 'AmbientStrength',.5)

5. Define the View
Define the view and add lighting (view, axis volumebounds, Projection, camlight).

view(-100,30)
axis(volumebounds(x,y,z,wind_speed))
set(gca,'Projection','perspective')
camlight left

 Displaying Divergence with Stream Tubes

3-45

3 Volume Visualization

3-46

Creating Stream Particle Animations
In this section...
“Projectile Path Over Time” on page 3-47
“What Particle Animations Can Show” on page 3-48
“1. Specify Starting Points of the Data Range” on page 3-49
“2. Create Stream Lines to Indicate Particle Paths” on page 3-49
“3. Define the View” on page 3-49
“4. Calculate the Stream Particle Vertices” on page 3-49

Projectile Path Over Time
This example shows how to display the path of a projectile as a function of time using a
three-dimensional quiver plot.

Show the path of the following projectile using constants for velocity and acceleration, vz
and a. Calculate z as the height as time varies from 0 to 1.

z(t) = vzt + at2

2

vz = 10; % velocity constant
a = -32; % acceleration constant
t = 0:.1:1;
z = vz*t + 1/2*a*t.^2;

Calculate the position in the x-direction and y-direction.

vx = 2;
x = vx*t;

vy = 3;
y = vy*t;

Compute the components of the velocity vectors and display the vectors using a 3-D
quiver plot. Change the viewpoint of the axes to [70,18].

u = gradient(x);
v = gradient(y);

 Creating Stream Particle Animations

3-47

w = gradient(z);
scale = 0;

figure
quiver3(x,y,z,u,v,w,scale)
view([70,18])

What Particle Animations Can Show
A stream particle animation is useful for visualizing the flow direction and speed of a
vector field. The “particles” (represented by any of the line markers) trace the flow along

3 Volume Visualization

3-48

a particular stream line. The speed of each particle in the animation is proportional to the
magnitude of the vector field at any given point along the stream line.

1. Specify Starting Points of the Data Range
This example determines the region of the volume to plot by specifying the appropriate
starting points. In this case, the stream plots begin at x = 100 and y spans 20 to 50 in the
z = 5 plane, which is not the full volume bounds.

load wind
[sx sy sz] = meshgrid(100,20:2:50,5);

2. Create Stream Lines to Indicate Particle Paths
This example uses stream lines (stream3, streamline) to trace the path of the
animated particles, which adds a visual context for the animation.

verts = stream3(x,y,z,u,v,w,sx,sy,sz);
sl = streamline(verts);

3. Define the View
While all the stream lines start in the z = 5 plane, the values of some spiral down to lower
values. The following settings provide a clear view of the animation:

• The viewpoint (view) selected shows both the plane containing most stream lines and
the spiral.

• Selecting a data aspect ratio (daspect) of [2 2 0.125] provides greater resolution
in the z-direction to make the stream particles more easily visible in the spiral.

• Set the axes limits to match the data limits (axis) and draw the axis box (box).

view(-10.5,18)
daspect([2 2 0.125])
axis tight;
set(gca,'BoxStyle','full','Box','on')

4. Calculate the Stream Particle Vertices
Determine the vertices along the stream line where a particle will be drawn. The
interpstreamspeed function returns this data based on the stream line vertices and

 Creating Stream Particle Animations

3-49

the speed of the vector data. This example scales the velocities by 0.05 to increase the
number of interpolated vertices.

Set the axes SortMethod property to childorder so the animation runs faster.

The streamparticles function sets the following properties:

• Animate to 10 to run the animation 10 times.
• ParticleAlignment to on to start all particle traces together.
• MarkerEdgeColor to none to draw only the face of the circular marker. Animations

usually run faster when marker edges are not drawn.
• MarkerFaceColor to red.
• Marker to o, which draws a circular marker. You can use other line markers as well.

iverts = interpstreamspeed(x,y,z,u,v,w,verts,0.01);
set(gca,'SortMethod','childorder');
streamparticles(iverts,15,...
 'Animate',10,...
 'ParticleAlignment','on',...
 'MarkerEdgeColor','none',...
 'MarkerFaceColor','red',...
 'Marker','o');

3 Volume Visualization

3-50

 Creating Stream Particle Animations

3-51

Vector Field Displayed with Cone Plots
In this section...
“What Cone Plots Can Show” on page 3-52
“1. Create an Isosurface” on page 3-52
“2. Add Isocaps to the Isosurface” on page 3-53
“3. Create the First Set of Cones” on page 3-53
“4. Create Second Set of Cones” on page 3-54
“5. Define the View” on page 3-54
“6. Add Lighting” on page 3-54

What Cone Plots Can Show
This example plots the velocity vector cones for the wind data. The graph produced
employs a number of visualization techniques:

• An isosurface is used to provide visual context for the cone plots and to provide means
to select a specific data value for a set of cones.

• Lighting enables the shape of the isosurface to be clearly visible.
• The use of perspective projection, camera positioning, and view angle adjustments

composes the final view.

1. Create an Isosurface
Displaying an isosurface within the rectangular space of the data provides a visual
context for the cone plot. Creating the isosurface requires a number of steps:

1 Calculate the magnitude of the vector field, which represents the speed of the wind.
2 Use isosurface and patch to draw an isosurface illustrating where in the

rectangular space the wind speed is equal to a particular value. Regions inside the
isosurface have higher wind speeds, regions outside the isosurface have lower wind
speeds.

3 Use isonormals to compute vertex normals of the isosurface from the volume data
rather than calculate the normals from the triangles used to render the isosurface.
These normals generally produce more accurate results.

3 Volume Visualization

3-52

4 Set visual properties of the isosurface, making it red and without drawing edges
(FaceColor, EdgeColor).

load wind
wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hiso = patch(isosurface(x,y,z,wind_speed,40));
isonormals(x,y,z,wind_speed,hiso)
hiso.FaceColor = 'red';
hiso.EdgeColor = 'none';

2. Add Isocaps to the Isosurface
Isocaps are similar to slice planes in that they show a cross section of the volume. They
are designed to be the end caps of isosurfaces. Using interpolated face color on an isocap
causes a mapping of data value to color in the current colormap. To create isocaps for the
isosurface, define them at the same isovalue (isocaps, patch, colormap).

hcap = patch(isocaps(x,y,z,wind_speed,40),...
 'FaceColor','interp',...
 'EdgeColor','none');
colormap hsv

3. Create the First Set of Cones
• Use daspect to set the data aspect ratio of the axes before calling coneplot so

function can determine the proper size of the cones.
• Determine the points at which to place cones by calculating another isosurface that

has a smaller isovalue (so the cones are displayed outside the first isosurface) and use
reducepatch to reduce the number of faces and vertices (so there are not too many
cones on the graph).

• Draw the cones and set the face color to blue and the edge color to none.

daspect([1 1 1]);
[f,verts] = reducepatch(isosurface(x,y,z,wind_speed,30),0.07);
h1 = coneplot(x,y,z,u,v,w,verts(:,1),verts(:,2),verts(:,3),3);
h1.FaceColor = 'blue';
h1.EdgeColor = 'none';

 Vector Field Displayed with Cone Plots

3-53

4. Create Second Set of Cones
1 Create a second set of points at values that span the data range (linspace,

meshgrid).
2 Draw a second set of cones and set the face color to green and the edge color to

none.

xrange = linspace(min(x(:)),max(x(:)),10);
yrange = linspace(min(y(:)),max(y(:)),10);
zrange = 3:4:15;
[cx,cy,cz] = meshgrid(xrange,yrange,zrange);
h2 = coneplot(x,y,z,u,v,w,cx,cy,cz,2);
h2.FaceColor = 'green';
h2.EdgeColor = 'none';

5. Define the View
1 Use the axis command to set the axis limits equal to the minimum and maximum

values of the data and enclose the graph in a box to improve the sense of a volume
(box).

2 Set the projection type to perspective to create a more natural view of the volume.
Set the viewpoint and zoom in to make the scene larger (camproj, camzoom, view).

axis tight
set(gca,'BoxStyle','full','Box','on')
camproj perspective
camzoom(1.25)
view(65,45)

6. Add Lighting
Add a light source and use Gouraud lighting for the smoothest lighting of the isosurface.
Increase the strength of the background lighting on the isocaps to make them brighter
(camlight, lighting, AmbientStrength).

camlight(-45,45)
hcap.AmbientStrength = 0.6;
lighting gouraud

3 Volume Visualization

3-54

 Vector Field Displayed with Cone Plots

3-55

Visualizing Volume Data
This example shows several methods for visualizing volume data in MATLAB®.

Display Isosurface

An isosurface is a surface where all the points within a volume of space have a constant
value. Use the isosurface function to generate the faces and vertices for the outside of
the surface and the isocaps function to generate the faces and vertices for the end caps
of the volume. Use the patch command to draw the volume and its end caps.

load mri D % load data
D = squeeze(D); % remove singleton dimension
limits = [NaN NaN NaN NaN NaN 10];
[x, y, z, D] = subvolume(D, limits); % extract a subset of the volume data

[fo,vo] = isosurface(x,y,z,D,5); % isosurface for the outside of the volume
[fe,ve,ce] = isocaps(x,y,z,D,5); % isocaps for the end caps of the volume

figure
p1 = patch('Faces', fo, 'Vertices', vo); % draw the outside of the volume
p1.FaceColor = 'red';
p1.EdgeColor = 'none';

p2 = patch('Faces', fe, 'Vertices', ve, ... % draw the end caps of the volume
 'FaceVertexCData', ce);
p2.FaceColor = 'interp';
p2.EdgeColor = 'none';

view(-40,24)
daspect([1 1 0.3]) % set the axes aspect ratio
colormap(gray(100))
box on

camlight(40,40) % create two lights
camlight(-20,-10)
lighting gouraud

3 Volume Visualization

3-56

Create Cone Plot

The coneplot command plots velocity vectors as cones at x, y, z points in a volume. The
cones represent the magnitude and direction of the vector field at each point.

cla % clear the current axes
load wind u v w x y z % load data

[m,n,p] = size(u);
[Cx, Cy, Cz] = meshgrid(1:4:m,1:4:n,1:4:p); % calculate the location of the cones

h = coneplot(u,v,w,Cx,Cy,Cz,y,4); % draw the cone plot
set(h,'EdgeColor', 'none')

 Visualizing Volume Data

3-57

axis tight equal
view(37,32)
box on
colormap(hsv)
light

Plot Streamlines

The streamline function plots streamlines for a velocity vector at x, y, z points in a
volume to illustrate the flow of a 3-D vector field.

cla

[m,n,p] = size(u);

3 Volume Visualization

3-58

[Sx, Sy, Sz] = meshgrid(1,1:5:n,1:5:p); % calculate the starting points of the streamlines

streamline(u,v,w,Sx,Sy,Sz) % draw the streamlines

axis tight equal
view(37,32)
box on

Plot Streamtubes

The streamtube function plots streamtubes for a velocity vector at x, y, z points in a
volume. The width of the tube is proportional to the normalized divergence of the vector
field at each point.

 Visualizing Volume Data

3-59

cla

[m,n,p] = size(u);
[Sx, Sy, Sz] = meshgrid(1,1:5:n,1:5:p); % calculate the starting points of the streamlines

h = streamtube(u,v,w,Sx,Sy,Sz); % draw the streamtubes and return an array of surfaces
set(h, 'FaceColor', 'cyan') % use 'set' to change properties for an array of objects
set(h, 'EdgeColor', 'none')

axis tight equal
view(37,32)
box on
light

3 Volume Visualization

3-60

Combine Volume Visualizations

Combine volume visualization in a single plot to get a more comprehensive picture of a
velocity field within a volume.

cla
spd = sqrt(u.*u + v.*v + w.*w); % wind speed at each point in the volume

[fo,vo] = isosurface(x,y,z,spd,40); % isosurface for the outside of the volume
[fe,ve,ce] = isocaps(x,y,z,spd,40); % isocaps for the end caps of the volume

p1 = patch('Faces', fo, 'Vertices', vo); % draw the isosurface for the volume
p1.FaceColor = 'red';
p1.EdgeColor = 'none';

p2 = patch('Faces', fe, 'Vertices', ve, ... % draw the end caps of the volume
 'FaceVertexCData', ce);
p2.FaceColor = 'interp';
p2.EdgeColor = 'none' ;

[fc, vc] = isosurface(x, y, z, spd, 30); % isosurface for the cones
[fc, vc] = reducepatch(fc, vc, 0.2); % reduce the number of faces and vertices
h1 = coneplot(x,y,z,u,v,w,vc(:,1),vc(:,2),vc(:,3),3); % draw the coneplot
h1.FaceColor = 'cyan';
h1.EdgeColor = 'none';

[sx, sy, sz] = meshgrid(80, 20:10:50, 0:5:15); % starting points for streamline
h2 = streamline(x,y,z,u,v,w,sx,sy,sz); % draw the streamlines
set(h2, 'Color', [.4 1 .4])

axis tight equal
view(37,32)
box on
light

 Visualizing Volume Data

3-61

3 Volume Visualization

3-62

Visualizing Four-Dimensional Data
This example shows several techniques to visualize four dimensional (4-D) data in
MATLAB®.

Visualize 4-D Data with One Discrete Variable

Sometimes data has a variable which is discrete with only a few possible values. You can
create multiple plots of the same type for data in each discrete group. For example, use
the stem3 function to see the relationship between three variables where the fourth
variable divides the population into discrete groups.

load patients Smoker Age Weight Systolic % load data

nsIdx = Smoker == 0;
smIdx = Smoker == 1;

figure
stem3(Age(nsIdx), Weight(nsIdx), Systolic(nsIdx), 'Color', 'b') % stem plot for non-smokers
hold on
stem3(Age(smIdx), Weight(smIdx), Systolic(smIdx), 'Color', 'r') % stem plot for smokers
hold off

view(-60,15)
zlim([100 140])

xlabel('Age') % add labels and a legend
ylabel('Weight')
zlabel('Systolic Blood Pressure')
legend('Non-Smoker', 'Smoker', 'Location', 'NorthWest')

 Visualizing Four-Dimensional Data

3-63

Visualize 4-D Data with Multiple Plots

With a large data set you might want to see if individual variables are correlated. You can
use the plotmatrix function to create an n by n matrix of plots to see the pair-wise
relationships between the variables. The plotmatrix function returns two outputs. The
first output is a matrix of the line objects used in the scatter plots. The second is a matrix
of the axes objects that are created.

The plotmatrix function can also be used for higher order data sets.

load patients Height Weight Diastolic Systolic % load data

labels = {'Height' 'Weight' 'Diastolic' 'Systolic'};
data = [Height Weight Systolic Diastolic];

3 Volume Visualization

3-64

[h,ax] = plotmatrix(data); % create a 4 x 4 matrix of plots
for i = 1:4 % label the plots
 xlabel(ax(4,i), labels{i})
 ylabel(ax(i,1), labels{i})
end

Visualize Function of Three Variables

For many kinds of four dimensional data, you can use color to represent the fourth
dimension. This works well if you have a function of three variables.

 Visualizing Four-Dimensional Data

3-65

For example, represent highway deaths in the United States as a function of longitude,
latitude, and if the location is rural or urban. The x, y, and z values in the plot represent
these three variables. The color represents the number of highway deaths.

cla
load accidents hwydata % load data

long = -hwydata(:,2); % longitude data
lat = hwydata(:,3); % latitude data
rural = 100 - hwydata(:,17); % percent rural data
fatalities = hwydata(:,11); % fatalities data

scatter3(long,lat,rural,40,fatalities,'filled') % draw the scatter plot
ax = gca;
ax.XDir = 'reverse';
view(-31,14)
xlabel('W. Longitude')
ylabel('N. Latitude')
zlabel('% Rural Population')

cb = colorbar; % create and label the colorbar
cb.Label.String = 'Fatalities per 100M vehicle-miles';

3 Volume Visualization

3-66

Visualize Data in a Volume

Your data may contain a measured value for a physical object such as temperature in a
pipe. In this cases, the physical dimensions can be represented as a volume with color
used to represent the magnitude of the measurement. For example, use the slice
function to show the value of the measured variable at cross-sections within the volume.

load fluidtemp x y z temp % load data

xslice = [5 9.9]; % define the cross sections to view
yslice = 3;
zslice = ([-3 0]);

slice(x, y, z, temp, xslice, yslice, zslice) % display the slices

 Visualizing Four-Dimensional Data

3-67

ylim([-3 3])
view(-34,24)

cb = colorbar; % create and label the colorbar
cb.Label.String = 'Temperature, C';

Plot the Function of a Complex Variable

A complex function has an input with real and imaginary parts and an output with real
and imaginary parts. You can use a three dimensional plot with color to represent the
complex function. In this case the x and y axes represent the real and imaginary parts of
the input. The z axis represents the real part of the output and the color represents the
imaginary part of the output.

3 Volume Visualization

3-68

r = (0:0.025:1)'; % create a matrix of complex inputs
theta = pi*(-1:0.05:1);
z = r*exp(1i*theta);
w = z.^3; % calculate the complex outputs

surf(real(z),imag(z),real(w),imag(w)) % visualize the complex function using surf
xlabel('Real(z)')
ylabel('Imag(z)')
zlabel('Real(w)')
cb = colorbar;
cb.Label.String = 'Imag(w)';

 Visualizing Four-Dimensional Data

3-69

Displaying Complex Three-Dimensional Objects
This example shows how to create and display a complex three dimensional object and
control its appearance.

Get Geometry of Object

This example uses a graphics object called the Newell teapot. The vertex, face, and color
index data for the teapot are calculated by the teapotData function. Since the teapot is
a complex geometric shape, there are a large number of vertices (4608) and faces (3872)
returned by the function.

[verts, faces, cindex] = teapotGeometry;

Create Teapot Patch Object

Using the geometry data, draw the teapot using the patch command. The patch
command creates a patch object.

figure
p = patch('Faces',faces,'Vertices',verts,'FaceVertexCData',cindex,'FaceColor','interp')

3 Volume Visualization

3-70

p =
 Patch with properties:

 FaceColor: 'interp'
 FaceAlpha: 1
 EdgeColor: [0 0 0]
 LineStyle: '-'
 Faces: [3872x4 double]
 Vertices: [4608x3 double]

 Show all properties

Use the view command to change the orientation of the object.

 Displaying Complex Three-Dimensional Objects

3-71

view(-151,30) % change the orientation
axis equal off % make the axes equal and invisible

Adjust Transparency

Make the object transparent using the FaceAlpha property of the patch object.

p.FaceAlpha = 0.3; % make the object semi-transparent

3 Volume Visualization

3-72

If the FaceColor property is set to 'none', then the object appears as a wire frame
diagram.

p.FaceColor = 'none'; % turn off the colors

 Displaying Complex Three-Dimensional Objects

3-73

Change Colormap

Change the colors for the object using the colormap function.

p.FaceAlpha = 1; % remove the transparency
p.FaceColor = 'interp'; % set the face colors to be interpolated
p.LineStyle = 'none'; % remove the lines
colormap(copper) % change the colormap

3 Volume Visualization

3-74

Light the Object

Add a light to make the object appear more realistic.

l = light('Position',[-0.4 0.2 0.9],'Style','infinite')

l =
 Light with properties:

 Color: [1 1 1]
 Style: 'infinite'
 Position: [-0.4000 0.2000 0.9000]
 Visible: 'on'

 Displaying Complex Three-Dimensional Objects

3-75

 Show all properties

lighting gouraud

These properties of the patch object affect the strength of the light and the reflective
properties of the object:

• AmbientStrength - controls the strength of ambient light
• DiffuseStrength - controls the strength of diffuse light
• SpecularStrength - controls the strength of reflected light
• SpecularExponent - controls the harshness of reflected light

3 Volume Visualization

3-76

• SpecularColorReflectance - controls how reflected color is calculated.

You can set these properties individually. To set these properties to a predetermined set of
values that approximate the appearance of metal, shiny, or dull material, use the
material command.

material shiny

Adjust the position of the light using its Position property. The position is in x, y, z
coordinates.

l.Position = [-0.1 0.6 0.8]

 Displaying Complex Three-Dimensional Objects

3-77

l =
 Light with properties:

 Color: [1 1 1]
 Style: 'infinite'
 Position: [-0.1000 0.6000 0.8000]
 Visible: 'on'

 Show all properties

3 Volume Visualization

3-78

Displaying Topographic Data
This example shows several ways to represent the Earth's topography. The data used in
this example are available from the National Geophysical Data Center, NOAA US
Department of Commerce under data announcement 88-MGG-02.

About the Topography Data

The data file, topo.mat, contains topographic data. topo is the altitude data and
topomap1 is a colormap for the altitude.

load topo topo topomap1 % load data
whos('topo','topomap1')

 Name Size Bytes Class Attributes

 topo 180x360 518400 double
 topomap1 64x3 1536 double

Create Contour Plot

One way to visualize topographic data is to create a contour plot. To show the outline of
the Earth's continents, plot points that have zero altitude. The first three input arguments
to contour specify the X, Y, and Z values on the contour plot. The fourth argument
specifies the contour levels to plot.

x = 0:359; % longitude
y = -89:90; % latitude

figure
contour(x,y,topo,[0 0])

axis equal % set axis units to be the same size
box on % display bounding box

ax = gca; % get current axis
ax.XLim = [0 360]; % set x limits
ax.YLim = [-90 90]; % set y limits
ax.XTick = [0 60 120 180 240 300 360]; % define x ticks
ax.YTick = [-90 -60 -30 0 30 60 90]; % define y ticks

 Displaying Topographic Data

3-79

View Data as Image

You can create an image of the topography using the elevation data and a custom
colormap. The topography data is treated as an index into the custom colormap. Set the
CDataMapping of the image to 'scaled' to linearly scale the data values to the range of
the colormap. In this colormap, the shades of green show the altitude data, and the
shades of blue represent depth below sea level.

image([0 360],[-90 90], flip(topo), 'CDataMapping', 'scaled')
colormap(topomap1)

axis equal % set axis units to be the same size

ax = gca; % get current axis

3 Volume Visualization

3-80

ax.XLim = [0 360]; % set x limits
ax.YLim = [-90 90]; % set y limits
ax.XTick = [0 60 120 180 240 300 360]; % define x ticks
ax.YTick = [-90 -60 -30 0 30 60 90]; % define y ticks

Use Texture Mapping

Texture mapping maps a 2-D image onto a 3-D surface. To map the topography to a
spherical surface, set the color of the surface, specified by the CData property, to the
topographic data and set the FaceColor property to 'texturemap'.

clf
[x,y,z] = sphere(50); % create a sphere
s = surface(x,y,z); % plot spherical surface

 Displaying Topographic Data

3-81

s.FaceColor = 'texturemap'; % use texture mapping
s.CData = topo; % set color data to topographic data
s.EdgeColor = 'none'; % remove edges
s.FaceLighting = 'gouraud'; % preferred lighting for curved surfaces
s.SpecularStrength = 0.4; % change the strength of the reflected light

light('Position',[-1 0 1]) % add a light

axis square off % set axis to square and remove axis
view([-30,30]) % set the viewing angle

3 Volume Visualization

3-82

